organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1β,2a,3a,7a,11a,13β)-1,3,7,11-Tetraacetoxy-2,13-bis(benzyloxy)-21-methyl-19,21-secohetisan-19-al hemihydrate

Feng-Zheng Chen,* Qing-Xiang Xiang, Yuan-Qin Zhang and Jun-Ru Xiong

Department of Chemistry and Life Sciences, Leshan Teachers' College, Leshan 614004, People's Republic of China Correspondence e-mail: fzchen7200@163.com

Received 7 April 2009; accepted 14 May 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.008 Å; disorder in solvent or counterion; R factor = 0.052; wR factor = 0.150; data-toparameter ratio = 7.7.

In the crystal structure of the title compound, $C_{43}H_{46}NO_{13}$. 0.5H₂O, the molecule assumes a U-shaped conformation, the terminal benzene rings being approximately parallel and partially overlapped with each other. The molecule contains eight alicyclic and heterocyclic rings. The cyclohexane rings adopt chair conformations, the other three six-membered carbocyclic rings form a bicyclo[2.2.2]octane system with a boat conformation for each six-membered ring, the sixmembered heterocyclic ring has a chair conformation and both of the five-membered rings have envelope conformations. The solvent water molecule links with the organic molecule via classic O-H···O and weak C-H···O hydrogen bonding in the crystal structure.

Related literature

For general background, see: Deng et al. (1992).

Experimental

Crystal data

$C_{43}H_{46}NO_{13} \cdot 0.5H_2O$
$M_r = 793.82$
Orthorhombic, $P2_12_12_1$
u = 11.517 (3) Å
p = 18.045 (4) Å
r = 19.241 (4) Å

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: none 4333 measured reflections 4092 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	530 parameters
$wR(F^2) = 0.150$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
4092 reflections	$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$

 $V = 3998.7 (16) \text{ Å}^3$

Mo Ka radiation $\mu = 0.10 \text{ mm}^{-1}$

 $0.52 \times 0.46 \times 0.42 \text{ mm}$

3 standard reflections

every 250 reflections

intensity decay: 2.0%

2220 reflections with $I > 2\sigma(I)$

Z = 4

T = 292 K

 $R_{\rm int} = 0.007$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W - H1A \cdots O11^{i}$	0.89	2.38	3.205 (15)	155
$O1W - H1B \cdots O6$	0.90	2.39	3.208 (15)	151
$C_{23} = H_{23}B_{13} + O_{1}W$	0.97	2.40	3 491 (17)	159
$C29-H29\cdots O7^{iii}$	0.93	2.40	3.290 (8)	160
Symmetry codes: (i)	$-x + \frac{1}{2}, -y - \frac{1}{2}$	$+1, z + \frac{1}{2};$	(ii) $-x + 1, y + \frac{1}{2},$	$-z + \frac{1}{2};$ (iii)
$-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}.$				

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by grants from the Department of Science and Technology of Sichuan Province, China (grant No. 05JY029), and the Scientific Research Fund of Leshan Teachers' College, China (grant No. Z07061).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2510).

References

Deng, Y. P., Chen, D. H. & Sun, W. L. (1992). Acta Chim. Sinica, 50, 822-826. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Gabe, E. J. & White, P. S. (1993). DIFRAC. Abstract PA104. American Crystallographic Association Meeting, Pittsburgh, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o1432 [doi:10.1107/S1600536809018315]

(1^{*β*},2*α*,3*α*,7*α*,11*α*,13^{*β*})-1,3,7,11-Tetraacetoxy-2,13-bis(benzyloxy)-21-methyl-19,21-secohetisan-19al hemihydrate

F.-Z. Chen, Q.-X. Xiang, Y.-Q. Zhang and J.-R. Xiong

Comment

The diterpenoid alkaloid, acetyldelgradine, has been isolated from *Delphiniumgrandiflorum L*. (Deng *et al.*, 1992) and its structure was established from the spectroscopic data. In our current investigation, the title compound was isolated from *Aconitum carmichaeli Debx*, and its structure was confirmed by X-ray diffraction study.

Themolecular structure of the title compound is shown in Fig. 1. The molecule of the title compound assumes an U-shaped conformation, with terminal benzene rings being approximately parallel and partially overlapped to each other. The molecule contains eight alicyclic and heterocyclic rings. Cyclohexane rings A (C1/C2/C3/C4/C5/C10) and B (C5/C6/C7/C8/C9/C10) adopt chair conformations; six-membered rings C (C8/C9/C11/C12/C13/C14), D (C8/C9/C11/C12/C15/C16) and E (C8/C12/C13/C14/C15/C16) form a bicycle [2.2.2] octane system with the boat conformation for each six-membered ring C, D and E; the six-membered heterocyclic ring F (C6/C7/C8/C14/C20/N1) adopts a screw-boat conformation; while the five-membered rings G (C5/C6/C10/C20/N1) and H (C8/C9/C10/C14/C20) adopt the same envelope conformation.

The lattice water molecule links with the organic molecule *via* O—H···O hydrogen bonding, and weak molecular C—H···O hydrogen bonding is also present in the crystal structure (Table 1).

Experimental

The title compound was isolated from the roots of Aconitum carmichaeli Debx and crystals suitable for X-ray structure analysis were obtained by slow evaporation from an acetone-water solution at room temperature.

Refinement

Water H atoms were placed on chemical-sensible positions, other H atoms were located geometrically with C—H = 0.93–0.98 Å. H atoms were refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.5U_{eq}(O)$. The absolute configuration was not determined, and Friedel pairs were merged.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Dashed line indicates hydrogen bonding.

(1β,2α,3α,7α,11α,13β)-1,3,7,11-Tetraacetoxy-2,13-bis(benzyloxy)- 21-dimethyl-19,21-secohetisan-19-al hemihydrate

Crystal data

$F_{000} = 1680$
$D_{\rm x} = 1.319 {\rm Mg m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 36 reflections
$\theta = 4.6 - 9.6^{\circ}$
$\mu = 0.10 \text{ mm}^{-1}$
T = 292 K
Block, colourless
$0.52\times0.46\times0.42~mm$

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.007$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.6^{\circ}$
T = 292 K	$h = -3 \rightarrow 13$
$\omega/2\theta$ scans	$k = -8 \rightarrow 21$
Absorption correction: none	$l = -4 \rightarrow 23$
4333 measured reflections	3 standard reflections
4092 independent reflections	every 250 reflections
2220 reflections with $I > 2\sigma(I)$	intensity decay: 2.0%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.150$	$w = 1/[\sigma^2(F_o^2) + (0.0817P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.001$
4092 reflections	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
530 parameters	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) \boldsymbol{Z} х y N1 0.8109 (4) 0.0424 (10) 0.4658 (2) 0.2072 (2) 01 0.4566 (3) 0.41227 (19) 0.30263 (17) 0.0473 (9) O2 0.3551 (4) 0.3061 (3) 0.3012 (3) 0.0824 (13) O3 0.6957(3)0.29181 (18) 0.25073 (15) 0.0438 (8) 04 0.6532 (5) 0.1788 (2) 0.2904 (3) 0.109(2)O5 0.7455(3)0.3093(2)0.39340 (16) 0.0563 (10) 06 0.6180(7)0.2970(4)0.4783(3)0.137(3)07 0.9560 (4) 0.4295 (2) 0.3264(2)0.0677 (12) 08 0.7968(4)0.63060 (19) 0.16840 (17) 0.0547(10)09 0.8387 (5) 0.6961 (2) 0.2649(2)0.0863 (16) O10 0.16916 (18) 0.3615 (3) 0.4339(2) 0.0506 (9) 011 0.0971 (16) 0.2044(4)0.4848(3)0.1230(3)012 0.5520(3) 0.38202 (18) 0.07900 (15) 0.0492 (10) 013 0.7089 (5) 0.3518(2) 0.0167 (2) 0.0816 (14) O1W 0.50 0.4527 (15) 0.4368 (6) 0.5068 (7) 0.157 (5) H1A 0.3997 0.4441 0.5398 0.236* 0.50 H1B 0.236* 0.50 0.5077 0.4021 0.5148 C1 0.5433 (4) 0.3818 (3) 0.2552 (2) 0.0405 (12) H10.5055 0.3574 0.2157 0.049* C2 0.2978 (2) 0.0438 (13) 0.6125 (5) 0.3258 (3) H2 0.5599 0.2876 0.3158 0.053* C3 0.6726 (5) 0.3642 (3) 0.3580(2) 0.0490 (15) H3 0.6127 0.3804 0.3908 0.059* C4 0.4309(3)0.7491 (5) 0.3412 (2) 0.0468 (14) C5 0.6813 (5) 0.4848 (3) 0.2924 (2) 0.0418 (13) Н5 0.6320 0.5182 0.3197 0.050* C6 0.7700 (5) 0.5288 (3) 0.2504 (2) 0.0494 (14) H6 0.5487 0.2799 0.059* 0.8321 C7 0.7118 (5) 0.5894 (3) 0.2074 (2) 0.0459 (13) H7 0.6728 0.6236 0.2393 0.055* C8 0.6210 (5) 0.5581 (3) 0.1574 (2) 0.0406 (12) C9 0.5323 (4) 0.5144(3)0.2020(2)0.0397 (12) H9 0.5078 0.5457 0.2409 0.048*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C10	0.6107 (4)	0.4495 (2)	0.2311 (2)	0.0362 (12)
C11	0.4261 (5)	0.5014 (3)	0.1534 (2)	0.0458 (13)
H11	0.3729	0.5432	0.1599	0.055*
C12	0.4632 (5)	0.5014 (3)	0.0769 (2)	0.0465 (14)
H12	0.4015	0.4816	0.0471	0.056*
C13	0.5756 (5)	0.4594 (3)	0.0665 (2)	0.0478 (14)
H13	0.6009	0.4655	0.0182	0.057*
C14	0.6697 (5)	0.4909 (3)	0.1149 (2)	0.0416 (13)
H14	0.7379	0.5061	0.0880	0.050*
C15	0.5672 (5)	0.6171 (3)	0.1110 (3)	0.0489 (14)
H15A	0.5222	0.6513	0.1391	0.059*
H15B	0.6280	0.6449	0.0879	0.059*
C16	0.4908 (5)	0.5817 (3)	0.0584 (2)	0.0507 (15)
C17	0.4573 (6)	0.6101 (3)	-0.0017 (3)	0.0678 (17)
H17A	0.4830	0.6577	-0.0136	0.102*
H17B	0.4097	0.5839	-0.0307	0.102*
C18	0.7737 (6)	0.4725 (3)	0.4089 (2)	0.0660 (18)
H18A	0.7038	0.4753	0.4360	0.099*
H18B	0.8004	0.5216	0.3984	0.099*
H18C	0.8323	0.4466	0.4348	0.099*
C19	0.8629 (5)	0.4042 (3)	0.3101 (3)	0.0517 (15)
H19	0.8607	0.3667	0.2771	0.062*
C20	0.7053 (4)	0.4388 (3)	0.1735 (2)	0.0394 (12)
H20	0.7120	0.3872	0.1581	0.047*
C21	0.9154 (5)	0 4730 (4)	0 1657 (3)	0.0621 (16)
H21A	0.9810	0 4798	0 1958	0.093*
H21B	0.9081	0.5150	0.1354	0.093*
H21C	0.9261	0.4290	0.1385	0.093*
C22	0.3641 (6)	0 3712 (4)	0.3187 (3)	0.0628 (17)
C23	0.2783 (6)	0.4138(4)	0.3600 (4)	0.0020(17)
H23A	0.2664	0.4614	0.3390	0.133*
H23R	0.3069	0.4202	0.4065	0.133*
H23C	0.2061	0.3872	0.3613	0.133*
C24	0.7091 (5)	0.2182 (3)	0.2527 (3)	0.155 0.0515(14)
C25	0.7091(5)	0.2102(3) 0.1021(3)	0.2327(3)	0.0517(14)
C26	0.8602 (6)	0.1921(3) 0.2382(3)	0.1606 (3)	0.0517(14)
H26	0.8002 (0)	0.2382 (5)	0.1613	0.0000 (10)
C27	0.0435 (6)	0.2007	0.1015	0.073 (10)
H27	0.9433 (0)	0.2121(4) 0.2442	0.0871	0.0739(19)
C28	0.9840	0.2442 0.1361 (4)	0.0871 0.1156 (4)	0.087
U28	1.0205	0.1172	0.0845	0.001 (2)
C20	1.0203	0.1172	0.0845	0.097°
U29	0.9110(7)	0.0901 (4)	0.1591 (4)	0.002 (2)
C30	0.9303	0.0401	0.1397 0.2026 (4)	0.076(2)
U30	0.8207 (0)	0.1130 (3)	0.2020 (4)	0.070(2)
C21	0.7007	0.0029	0.2313 0.4522(4)	0.0745 (10)
C31	0.7000(7)	0.2792(4)	0.4332 (4)	0.0743(19)
C32	0.7091(7)	0.2230 (4)	0.4600 (5)	0.092 (2)
пэ2А	0.8070	0.2451	0.4/52	0.120*
пэ2В	0./80/	0.1/92	0.4338	0.138*

H32C	0.7733	0.2169	0.5290	0.138*
C33	0.8555 (6)	0.6848 (3)	0.2056 (4)	0.0667 (18)
C34	0.9414 (7)	0.7233 (4)	0.1601 (4)	0.099 (2)
H34A	0.9086	0.7302	0.1147	0.148*
H34B	1.0104	0.6937	0.1566	0.148*
H34C	0.9604	0.7706	0.1798	0.148*
C35	0.2509 (5)	0.4329 (3)	0.1512 (3)	0.0550 (15)
C36	0.1945 (6)	0.3630 (4)	0.1650 (4)	0.086 (2)
H36A	0.2522	0.3250	0.1705	0.130*
H36B	0.1445	0.3506	0.1268	0.130*
H36C	0.1494	0.3668	0.2067	0.130*
C37	0.6245 (6)	0.3329 (3)	0.0482 (3)	0.0553 (15)
C38	0.5864 (6)	0.2548 (3)	0.0582 (3)	0.0549 (16)
C39	0.6559 (7)	0.2000 (3)	0.0315 (3)	0.076 (2)
H39	0.7251	0.2121	0.0093	0.091*
C40	0.6216 (10)	0.1249 (4)	0.0379 (4)	0.100 (3)
H40	0.6682	0.0872	0.0204	0.120*
C41	0.5203 (10)	0.1088 (5)	0.0698 (5)	0.115 (3)
H41	0.4982	0.0594	0.0738	0.138*
C42	0.4482 (8)	0.1630 (4)	0.0966 (4)	0.100 (2)
H42	0.3782	0.1507	0.1178	0.120*
C43	0.4837 (6)	0.2370 (3)	0.0908 (3)	0.0716 (19)
H43	0.4374	0.2744	0.1092	0.086*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.033 (2)	0.046 (2)	0.048 (2)	0.001 (2)	-0.006 (2)	0.001 (2)
01	0.044 (2)	0.052 (2)	0.0460 (19)	0.003 (2)	0.0148 (19)	0.0070 (17)
O2	0.063 (3)	0.079 (3)	0.105 (3)	-0.011 (3)	0.009 (3)	0.012 (3)
O3	0.048 (2)	0.0353 (19)	0.0476 (18)	0.0034 (19)	0.0071 (18)	0.0019 (15)
O4	0.129 (5)	0.049 (3)	0.149 (4)	0.007 (3)	0.079 (4)	0.026 (3)
O5	0.062 (3)	0.061 (2)	0.0456 (19)	0.000 (2)	-0.010 (2)	0.0157 (18)
O6	0.158 (6)	0.148 (6)	0.105 (4)	0.059 (5)	0.057 (4)	0.077 (4)
07	0.058 (3)	0.064 (3)	0.081 (3)	-0.003 (2)	-0.023 (2)	0.018 (2)
08	0.061 (2)	0.049 (2)	0.054 (2)	-0.010 (2)	-0.007 (2)	0.0110 (18)
09	0.125 (4)	0.062 (3)	0.072 (3)	-0.010 (3)	-0.032 (3)	-0.006 (2)
O10	0.039 (2)	0.054 (2)	0.059 (2)	-0.004 (2)	0.000 (2)	0.0128 (19)
011	0.055 (3)	0.092 (4)	0.144 (4)	0.002 (3)	-0.022 (3)	0.028 (4)
012	0.062 (3)	0.044 (2)	0.0419 (18)	0.002 (2)	-0.001 (2)	-0.0032 (16)
013	0.086 (3)	0.071 (3)	0.088 (3)	0.003 (3)	0.034 (3)	-0.003 (2)
O1W	0.212 (15)	0.086 (8)	0.174 (12)	0.009 (10)	-0.013 (13)	-0.010 (8)
C1	0.041 (3)	0.045 (3)	0.036 (2)	0.005 (3)	0.007 (3)	0.001 (2)
C2	0.051 (3)	0.042 (3)	0.039 (2)	0.006 (3)	0.005 (3)	0.003 (2)
C3	0.062 (4)	0.052 (3)	0.034 (2)	0.003 (3)	-0.001 (3)	0.006 (2)
C4	0.061 (4)	0.039 (3)	0.041 (3)	-0.003 (3)	-0.014 (3)	0.003 (2)
C5	0.054 (3)	0.036 (3)	0.036 (2)	-0.002 (3)	0.001 (3)	-0.005 (2)
C6	0.053 (4)	0.054 (3)	0.041 (3)	-0.005 (3)	-0.008 (3)	0.004 (3)

C7	0.061 (4)	0.038 (3)	0.039 (2)	-0.001 (3)	0.000 (3)	0.004 (2)
C8	0.049 (3)	0.039 (3)	0.034 (2)	0.006 (3)	0.000 (3)	0.004 (2)
С9	0.038 (3)	0.045 (3)	0.037 (2)	0.012 (3)	0.001 (2)	0.000(2)
C10	0.031 (3)	0.038 (3)	0.040 (2)	0.000 (2)	-0.003 (2)	0.001 (2)
C11	0.041 (3)	0.046 (3)	0.050 (3)	0.006 (3)	0.003 (3)	0.007 (2)
C12	0.047 (3)	0.053 (3)	0.040 (3)	-0.002 (3)	0.000 (3)	0.008 (2)
C13	0.052 (4)	0.051 (3)	0.041 (3)	0.000 (3)	0.003 (3)	0.006 (2)
C14	0.047 (3)	0.042 (3)	0.036 (2)	0.000 (3)	0.006 (2)	0.007 (2)
C15	0.051 (4)	0.046 (3)	0.050 (3)	0.006 (3)	0.008 (3)	0.012 (2)
C16	0.055 (4)	0.056 (3)	0.041 (3)	0.015 (3)	-0.001 (3)	0.006 (3)
C17	0.069 (4)	0.068 (4)	0.066 (4)	0.017 (4)	0.000 (4)	0.012 (3)
C18	0.091 (5)	0.063 (4)	0.044 (3)	-0.006 (4)	-0.023 (3)	-0.002 (3)
C19	0.049 (4)	0.054 (3)	0.052 (3)	0.001 (3)	-0.016 (3)	0.011 (3)
C20	0.036 (3)	0.041 (3)	0.041 (2)	0.007 (3)	0.003 (3)	-0.002 (2)
C21	0.032 (3)	0.085 (4)	0.069 (4)	0.004 (3)	0.003 (3)	0.003 (3)
C22	0.051 (4)	0.086 (5)	0.052 (3)	0.013 (4)	0.012 (3)	0.020 (3)
C23	0.072 (5)	0.096 (5)	0.099 (5)	0.018 (4)	0.035 (4)	0.026 (4)
C24	0.054 (4)	0.041 (3)	0.060 (3)	0.003 (3)	0.008 (3)	0.007 (3)
C25	0.052 (3)	0.047 (3)	0.056 (3)	0.005 (3)	0.001 (3)	-0.001 (3)
C26	0.067 (4)	0.054 (3)	0.061 (3)	0.007 (3)	0.011 (4)	0.003 (3)
C27	0.073 (5)	0.082 (5)	0.067 (4)	0.007 (4)	0.021 (4)	0.000 (4)
C28	0.081 (5)	0.085 (5)	0.076 (4)	0.023 (5)	0.016 (4)	-0.017 (4)
C29	0.082 (5)	0.057 (4)	0.107 (5)	0.023 (4)	0.005 (5)	-0.019 (4)
C30	0.085 (5)	0.047 (4)	0.096 (4)	0.003 (4)	0.016 (5)	-0.005 (3)
C31	0.086 (5)	0.065 (4)	0.073 (4)	-0.005 (5)	0.007 (4)	0.025 (4)
C32	0.102 (6)	0.079 (5)	0.095 (5)	0.002 (5)	-0.018 (5)	0.050 (4)
C33	0.071 (5)	0.052 (4)	0.077 (4)	-0.018 (4)	-0.030 (4)	0.015 (4)
C34	0.100 (6)	0.087 (5)	0.110 (5)	-0.033 (5)	-0.021 (5)	0.024 (4)
C35	0.039 (4)	0.055 (4)	0.072 (4)	0.000 (3)	-0.002 (3)	0.007 (3)
C36	0.060 (4)	0.104 (5)	0.096 (5)	-0.017 (4)	-0.010 (4)	0.024 (4)
C37	0.063 (4)	0.055 (4)	0.048 (3)	0.009 (4)	-0.001 (3)	-0.008 (3)
C38	0.073 (5)	0.047 (3)	0.045 (3)	-0.002 (4)	-0.005 (3)	-0.012 (3)
C39	0.097 (6)	0.066 (4)	0.065 (4)	-0.002 (5)	0.004 (4)	-0.008 (3)
C40	0.136 (8)	0.060 (5)	0.105 (6)	0.011 (6)	0.009 (6)	-0.017 (4)
C41	0.148 (10)	0.061 (5)	0.135 (8)	-0.020 (6)	0.022 (7)	-0.017 (5)
C42	0.103 (6)	0.071 (5)	0.124 (6)	-0.016 (5)	0.016 (6)	0.007 (5)
C43	0.077 (5)	0.054 (4)	0.085 (4)	-0.003 (4)	0.008 (4)	-0.006(3)

Geometric parameters (Å, °)

N1—C21	1.450 (7)	C14—H14	0.9800
N1—C20	1.461 (6)	C15—C16	1.487 (7)
N1—C6	1.486 (6)	C15—H15A	0.9700
O1—C22	1.334 (7)	C15—H15B	0.9700
O1—C1	1.460 (5)	C16—C17	1.322 (7)
O2—C22	1.227 (8)	С17—Н17А	0.9300
O3—C24	1.338 (6)	С17—Н17В	0.9300
O3—C2	1.454 (6)	C18—H18A	0.9600
O4—C24	1.203 (6)	C18—H18B	0.9600

O5—C31	1.344 (7)	C18—H18C	0.9600
O5—C3	1.464 (6)	С19—Н19	0.9300
O6—C31	1.188 (8)	C20—H20	0.9800
O7—C19	1.207 (6)	C21—H21A	0.9600
O8—C33	1.388 (7)	C21—H21B	0.9600
O8—C7	1.440 (6)	C21—H21C	0.9600
O9—C33	1.174 (8)	C22—C23	1.482 (9)
O10—C35	1.320 (7)	C23—H23A	0.9600
O10-C11	1.459 (6)	С23—Н23В	0.9600
O11—C35	1.207 (7)	С23—Н23С	0.9600
O12—C37	1.355 (7)	C24—C25	1.484 (7)
O12—C13	1.442 (6)	C25—C26	1.366 (7)
O13—C37	1.196 (7)	C25—C30	1.413 (7)
O1W—H1A	0.8898	C26—C27	1.369 (8)
O1W—H1B	0.9036	С26—Н26	0.9300
C1—C10	1.521 (6)	C27—C28	1.396 (9)
C1—C2	1.526 (6)	С27—Н27	0.9300
С1—Н1	0.9800	C28—C29	1.341 (9)
C2—C3	1.518 (7)	C28—H28	0.9300
С2—Н2	0.9800	C29—C30	1.362 (9)
C3—C4	1.528 (7)	С29—Н29	0.9300
С3—Н3	0.9800	С30—Н30	0.9300
C4—C19	1.518 (8)	C31—C32	1.452 (9)
C4—C18	1.530 (7)	C32—H32A	0.9600
C4—C5	1.560 (7)	C32—H32B	0.9600
C5—C6	1.526 (7)	C32—H32C	0.9600
C5—C10	1.568 (6)	C33—C34	1.492 (10)
С5—Н5	0.9800	C34—H34A	0.9600
C6—C7	1.526 (7)	C34—H34B	0.9600
С6—Н6	0.9800	C34—H34C	0.9600
С7—С8	1.529 (7)	C35—C36	1.444 (8)
С7—Н7	0.9800	C36—H36A	0.9600
C8—C15	1.522 (6)	С36—Н36В	0.9600
C8—C9	1.549 (7)	С36—Н36С	0.9600
C8—C14	1.565 (7)	C37—C38	1.487 (8)
C9—C11	1.558 (7)	C38—C39	1.372 (8)
C9—C10	1.581 (6)	C38—C43	1.377 (8)
С9—Н9	0.9800	C39—C40	1.418 (9)
C10—C20	1.567 (6)	С39—Н39	0.9300
C11—C12	1.533 (7)	C40—C41	1.349 (12)
С11—Н11	0.9800	C40—H40	0.9300
C12—C13	1.513 (8)	C41—C42	1.383 (11)
C12—C16	1.525 (7)	C41—H41	0.9300
C12—H12	0.9800	C42—C43	1.400 (9)
C13-C14	1.539 (7)	C42—H42	0.9300
C13—H13	0.9800	C43—H43	0.9300
C14—C20	1.524 (6)		
C21—N1—C20	118.4 (4)	С16—С17—Н17А	120.0
C21—N1—C6	120.1 (4)	С16—С17—Н17В	120.0

C20—N1—C6	103.9 (4)	H17A—C17—H17B	120.0
C22—O1—C1	118.8 (4)	C4—C18—H18A	109.5
C24—O3—C2	118.4 (4)	C4—C18—H18B	109.5
C31—O5—C3	119.2 (5)	H18A—C18—H18B	109.5
C33—O8—C7	115.2 (4)	C4—C18—H18C	109.5
C35—O10—C11	116.6 (4)	H18A—C18—H18C	109.5
C37—O12—C13	116.4 (4)	H18B—C18—H18C	109.5
H1A—O1W—H1B	117.6	O7—C19—C4	123.0 (5)
O1—C1—C10	103.7 (4)	O7—C19—H19	118.5
O1—C1—C2	105.7 (3)	C4—C19—H19	118.5
C10-C1-C2	115.4 (4)	N1-C20-C14	110.3 (4)
O1—C1—H1	110.5	N1-C20-C10	102.9 (4)
C10-C1-H1	110.5	C14—C20—C10	105.0 (4)
C2—C1—H1	110.5	N1—C20—H20	112.7
O3—C2—C3	111.5 (4)	C14—C20—H20	112.7
O3—C2—C1	106.8 (3)	С10—С20—Н20	112.7
C3—C2—C1	110.3 (4)	N1—C21—H21A	109.5
O3—C2—H2	109.4	N1—C21—H21B	109.5
C3—C2—H2	109.4	H21A—C21—H21B	109.5
C1—C2—H2	109.4	N1—C21—H21C	109.5
O5—C3—C2	107.9 (4)	H21A—C21—H21C	109.5
O5—C3—C4	107.5 (4)	H21B-C21-H21C	109.5
C2—C3—C4	117.5 (4)	O2—C22—O1	122.4 (6)
О5—С3—Н3	107.9	O2—C22—C23	126.0 (7)
С2—С3—Н3	107.9	O1—C22—C23	111.7 (6)
С4—С3—Н3	107.9	С22—С23—Н23А	109.5
C19—C4—C3	109.3 (5)	С22—С23—Н23В	109.5
C19—C4—C18	109.3 (5)	H23A—C23—H23B	109.5
C3—C4—C18	108.2 (4)	С22—С23—Н23С	109.5
C19—C4—C5	113.2 (4)	H23A—C23—H23C	109.5
C3—C4—C5	109.3 (4)	H23B—C23—H23C	109.5
C18—C4—C5	107.4 (4)	O4—C24—O3	122.9 (5)
C6—C5—C4	107.9 (4)	O4—C24—C25	124.9 (5)
C6—C5—C10	99.2 (3)	O3—C24—C25	112.3 (5)
C4—C5—C10	117.3 (4)	C26—C25—C30	118.4 (6)
С6—С5—Н5	110.6	C26—C25—C24	123.3 (5)
C4—C5—H5	110.6	C30—C25—C24	118.3 (5)
С10—С5—Н5	110.6	C25—C26—C27	121.7 (6)
N1—C6—C5	96.3 (4)	С25—С26—Н26	119.1
N1—C6—C7	112.6 (4)	С27—С26—Н26	119.1
C5—C6—C7	111.5 (4)	C26—C27—C28	118.3 (6)
N1—C6—H6	111.9	С26—С27—Н27	120.8
С5—С6—Н6	111.9	С28—С27—Н27	120.8
С7—С6—Н6	111.9	C29—C28—C27	121.0 (7)
O8—C7—C6	110.7 (4)	С29—С28—Н28	119.5
O8—C7—C8	109.1 (3)	C27—C28—H28	119.5
C6—C7—C8	112.1 (4)	C28—C29—C30	120.8 (6)
O8—C7—H7	108.2	С28—С29—Н29	119.6
С6—С7—Н7	108.2	С30—С29—Н29	119.6

С8—С7—Н7	108.2	C29—C30—C25	119.7 (6)
C15—C8—C7	112.9 (4)	С29—С30—Н30	120.1
C15—C8—C9	114.3 (4)	С25—С30—Н30	120.1
С7—С8—С9	106.9 (3)	O6—C31—O5	121.3 (7)
C15-C8-C14	112.4 (4)	O6—C31—C32	126.6 (7)
C7—C8—C14	111.7 (4)	O5—C31—C32	112.2 (7)
C9—C8—C14	97.5 (4)	С31—С32—Н32А	109.5
C8—C9—C11	105.2 (4)	С31—С32—Н32В	109.5
C8—C9—C10	101.3 (4)	H32A—C32—H32B	109.5
C11—C9—C10	123.4 (4)	C31—C32—H32C	109.5
С8—С9—Н9	108.6	H32A—C32—H32C	109.5
С11—С9—Н9	108.6	H32B—C32—H32C	109.5
С10—С9—Н9	108.6	O9—C33—O8	122.9 (6)
C1—C10—C20	118.1 (4)	O9—C33—C34	126.7 (6)
C1—C10—C5	111.2 (4)	O8—C33—C34	110.4 (6)
C20—C10—C5	102.8 (4)	C33—C34—H34A	109.5
C1—C10—C9	114.3 (4)	C33—C34—H34B	109.5
C20—C10—C9	103.7 (4)	H34A—C34—H34B	109.5
C5—C10—C9	105.2 (4)	С33—С34—Н34С	109.5
O10-C11-C12	110.0 (4)	H34A—C34—H34C	109.5
O10-C11-C9	113.6 (4)	H34B—C34—H34C	109.5
C12—C11—C9	111.0 (4)	O11—C35—O10	122.4 (6)
O10-C11-H11	107.3	O11—C35—C36	124.1 (6)
C12—C11—H11	107.3	O10—C35—C36	113.4 (6)
C9—C11—H11	107.3	С35—С36—Н36А	109.5
C13—C12—C16	105.4 (4)	С35—С36—Н36В	109.5
C13—C12—C11	111.5 (4)	H36A—C36—H36B	109.5
C16—C12—C11	106.4 (4)	С35—С36—Н36С	109.5
C13—C12—H12	111.1	H36A—C36—H36C	109.5
C16—C12—H12	111.1	H36B—C36—H36C	109.5
C11—C12—H12	111.1	O13—C37—O12	122.4 (6)
O12—C13—C12	107.5 (4)	O13—C37—C38	125.2 (6)
O12-C13-C14	112.9 (4)	O12—C37—C38	112.5 (6)
C12—C13—C14	109.7 (4)	C39—C38—C43	120.2 (6)
O12-C13-H13	108.9	C39—C38—C37	117.5 (6)
C12—C13—H13	108.9	C43—C38—C37	122.2 (6)
C14—C13—H13	108.9	C38—C39—C40	119.6 (7)
C20—C14—C13	114.2 (4)	С38—С39—Н39	120.2
C20—C14—C8	100.8 (3)	С40—С39—Н39	120.2
C13—C14—C8	110.5 (4)	C41—C40—C39	119.1 (8)
C20—C14—H14	110.3	C41—C40—H40	120.4
C13—C14—H14	110.3	C39—C40—H40	120.4
C8—C14—H14	110.3	C40—C41—C42	122.4 (8)
C16—C15—C8	109.9 (4)	C40—C41—H41	118.8
C16—C15—H15A	109.7	C42—C41—H41	118.8
C8—C15—H15A	109.7	C41—C42—C43	118.0 (8)
C16—C15—H15B	109.7	C41—C42—H42	121.0
C8—C15—H15B	109.7	C43—C42—H42	121.0
H15A—C15—H15B	108.2	C38—C43—C42	120.6 (7)

C17—C16—C15 C17—C16—C12 C15—C16—C12	127.0 (6) 120.8 (5) 111.9 (4)	C38—C43—H43 C42—C43—H43		119.7 119.7
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1A···O11 ⁱ	0.89	2.38	3.205 (15)	155
O1W—H1B…O6	0.90	2.39	3.208 (15)	151
C15—H15A…O4 ⁱⁱ	0.97	2.48	3.359 (8)	150
C23—H23B…O1W	0.96	2.58	3.491 (17)	159
C29—H29…O7 ⁱⁱⁱ	0.93	2.40	3.290 (8)	160

Symmetry codes: (i) -x+1/2, -y+1, z+1/2; (ii) -x+1, y+1/2, -z+1/2; (iii) -x+2, y-1/2, -z+1/2.

